(numpy) 배열의 분할
·
Python/numpy
배열의 분할도 배열의 결합과 마찬가지로 나누고자 하는 축을 지정해주어야 한다. 축을 지정해주지 않으면 기본값인 axis=0으로 들어가며 나누고자 하는 값이 나누어 떨어지지 않으면 오류가 발생한다. 예를들어 2행 3열짜리 배열을 행이 3개가 되도록 자른다면 오류가 나는 것 처럼 나누는 수와 축은 나누었을 때 나누어 떨어지는 관계여야 한다. np.split (arr,x,axis) 배열을 분할하는 함수이며 'arr배열을 x개로 axis를 축으로 나눈다'라는 뜻이다. 예시) import numpy as np x = np.array([[1,2,3],[4,5,6]]) print(np.split(x, 3, axis = 1)) >>> [array([[1], [4]]), array([[2], [5]]), array([[..
(numpy) 배열의 결합
·
Python/numpy
배열을 결합하기위해서는 특정한 조건이 필요하다. 예를 들어서 행으로 결합한다면 (가로로 붙힌다면) 배열의 세로(행)의 사이즈가 맞아야 한다. 반대로 열로 결합한다면 (세로로 붙힌다면) 당연히 가로 길이가 맞아야 할 것이다. 행으로 결합하기 위해 두 배열을 붙히는데 위의 배열은 세로 길이가 맞아 잘 결합되었지만, 아래 두 배열은 세로 길이가 맞질 않아 결합이 되지 않는다. 따라서 배열을 결합하기 위해선 행/열의 길이를 맞추어야 한다. np.concatenate((arr_1,arr_2),axis = ) arr_1 와 arr_2 두 배열을 합칠 때 사용한다. axis는 축을 의미하는데 0을 넣으면 열로 결합하기 때문에 (아래로 결합) 열의 크기를 맞추어야 하고 1은 가로로 결합한다는 의미이다. 예시) impo..
(numpy) random과 관련된 함수
·
Python/numpy
np.random.normal (x, y, z) 범위안의 값을 랜덤으로 생성한다, 이 때 매개변수의 의미는 x: 범위의 시작값, y : 범위의 끝 값, z : 요소의 개수 이다. 예시) import numpy as np a = np.random(np.random.normal(1, 10, 3) print(a) >>> [14.03268414 -5.36156989 7.73318699] np.random.randint (x, y, size) 범위안에 있는 정수 값을 랜덤으로 지정된 배열의 크기만큼 생성한다. 이 때 x와 y값은 범위의 시작과 끝값이며 size는 array의 크기를 의미한다. 예시) import numpy as np a = np.random.randint(5,10,size = (2,4)) prin..
(numpy) 특정 값으로 배열 생성 (np.zeros, np.ones, np.empty, np.full)
·
Python/numpy
배열을 생성 할 때 배열 전체에 특정 값을 주어야 한다거나 True와 False 등 추가적인 조건이 붙을 수 있다. 이럴 때를 대비하여 배열을 생성할 때 미리 값을 지정해 주는 함수가 있다. 먼저 0과 1로 이루어진 배열을 생성하는 함수에 대해 써 보려한다. np.zeros (x,y,z) 0으로 이루어진 y행 z열을 가진 array를 생성한다. 0은 False를 뜻하기 때문에 bool 형식에서도 자주 쓰인다. 이 때 x는 z축으로 나열되어 있는 배열을 뜻하며 그림은 다음과 같다. 위 그림은 3행 3열짜리 배열이 2개 있으므로 np.zeros(2,3,3)으로 나타낼 수 있다. 매개변수가 1개이기 때문에 괄호로 묶어줘야함 예시) import numpy as np a = np.zeros ((2, 3, 3)) ..
(numpy) 타입변환 (np.astype, np.tolist)
·
Python/numpy
np.astype (x) : 데이터 타입 변환 매개변수에 원하는 데이터 타입을 지정해 변환한다. 예시) import numpy as np a = np.array([1,2,3]) print('a = ',a.dtype) b = a.astype(float) print('b = ',b.dtype) >>> a = int32 b = float64 int 형식인 a 배열을 float 타입으로 바꿔준다. np.tolist (array) : array 형식인 데이터를 list 형식으로 바꾸어준다. 예시) import numpy as np a = np.array([1,2,3,4]) print(type(a)) b = a.tolist() print(type(b)) >>> a 의 형태는 array이지만 tolist로 바꿔준 후..
(numpy) 차원 관련 함수 (np.shape, np.size, np.reshape)
·
Python/numpy
np.shape : 매개변수로 받은 array가 몇 행 몇 열인지 튜플 형식으로 반환한다. 예시) import numpy as np arr = np.array([[1,2,3],[4,5,6]]) print(arr.shape) >>> (2, 3) 2행 3열 반환 arr 의 형태는 [[1,2,3], [4,5,6]] 의 형태로도 쓸 수 있으며 shape는 열과 행의 개수를 반환하는 함수이지 인덱스를 반환하지 않는다 np.size : 매개변수 array의 원소의 개수를 반환한다. 예시) import numpy as np arr = [[1,2,3],[4,5,6]] print(np.size(arr)) >>> 6 np.reshape (x,y) : array의 차원과 모양을 매개변수로 받은 x행 y열로 바꿔준다. 이 때..